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Abstract

Vibration measurements using optical full-field systems based on high-speed
footage are typically heavily burdened by noise, as the displacement ampli-
tudes of the vibrating structures are often very small (in the range of microm-
eters, depending on the structure). The modal information is troublesome to
measure as the structure’s response is close to, or below, the noise level of the
camera-based measurement system. This paper demonstrates modal param-
eter identification for such noisy measurements. It is shown that by using the
Least-Squares Complex-Frequency method combined with the Least-Squares
Frequency-Domain method, identification at high-frequencies is still possible.
By additionally incorporating a more precise sensor to identify the eigenval-
ues, a hybrid accelerometer / high-speed camera mode shape identification is
possible even below the noise floor. An accelerometer measurement is used
to identify the eigenvalues, while the camera measurement is used to produce
the full-field mode shapes close to 10 kHz. The identified modal parameters
improve the quality of the measured modal data and serve as a reduced model
of the structure’s dynamics.
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1



Keywords: mode shape, high-speed camera, modal parameter
identification, noise, optical flow, LSCF, Experimental Modal Analysis

1. Introduction

True full-field mode shapes are hard to measure. Measurements using
accelerometers produce sparse spatial information [1], laser vibrometers need
to scan the surface and do not produce an instantaneous measurement [2, 3]
and interferometric techniques such as Electronic Speckle Pattern Interfer-
ometry [4] measure the out-of-plane displacements, only. Displacement mea-
surements using high-speed cameras are increasingly being used in modal
analysis, because they can produce a dense, simultaneous, full-field 3D mea-
surement [5, 6]. The displacements can be identified from image sequences
with methods such as Digital Image Correlation [7], Gradient-based Optical
Flow [8–10], Point Tracking [11] and Phase-based methods [12].

Optical measurements using cameras have been used in civil engineer-
ing, where the displacement response at lower frequencies (below 100 Hz) is
relatively large [13–18]. Measurements with dynamic responses up to approx-
imately 1 kHz have also been demonstrated in [3, 19–23] with some spanning
up to about 2 kHz [24–26] and at most up to 2.4 kHz [10, 27]; however,
frequencies above 1 kHz are problematic because the displacement response
is generally less than micrometers, depending on the structure [10, 24]. Such
small displacements are significantly below the camera’s pixel size and there-
fore produce signals which are at, or below, the camera noise floor, making
them appear unidentifiable.

Modal identification returns the modal parameters from the measure-
ments. These modal parameters are usually in the form of a modal model [28],
which comprises the natural frequencies and damping (eigenvalues) and the
mode shapes (modal constants). Among the large number of modal-parameter
identification methods the LSCF (Least-Squares Complex Frequency) [29] in
combination with the LSFD (Least-Squares Frequency Domain) [30] is the
most commonly used, because it is fast and robust [31].

Perhaps the first modal identification performed on camera measurements
was performed by NASA on the MIR space station, where they used the
Eigenvalue Realization Algorithm [18]. Modal identification has also been
performed on optical measurements by implementing motion magnification
and edge detection to produce mode shapes [22]. In [32] the authors used
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modal parameter identification to determine mode shapes for damage detec-
tion. The authors of [33] compared the mode shapes measured by Digital
Image Correlation, 3D Point-Tracking, 3D Laser Vibrometry, and accelerom-
eter measurements. Among others, papers [34, 35] demonstrate the opera-
tional modal analysis using camera systems. Modal identification has also
been used as a concept for building-structure health monitoring [14].

The above mentioned papers are examples of lower-frequency vibrations
(range of tens to hundreds of Hz) with relatively larger displacements.
The goal of this research is to identify the modal information up to 10 kHz,
where the camera noise prevails. The identification is expected to improve
the quality of the measured data and increase the range of use for high-
speed camera systems in modal analysis. The widely accepted LSCF/LSFD
method is used on a hybrid measurement combining a precise accelerometer
and a full-field displacement response identified from a high-speed camera
measurement using a simplified Gradient-based Optical Flow [10]. The ac-
celerometer measurement is used to produce reliable eigenvalue identification
using LSCF and these eigenvalues are then used in the LSFD mode shape
identification on the full-field camera measurement.

The text is organized as follows: Section 2 covers an overview of the
Gradient-based Optical Flow used to identify the motion from videos, fol-
lowed by an overview of the LSCF/LSFD modal-parameter-identification
techniques. Section 3 combines the motion identification and modal param-
eter identification in an analysis of a lab-scale experiment, demonstrating
modal parameter identification at high frequencies and with high levels of
noise.

2. Theoretical background

2.1. Gradient-based Optical Flow

To identify the motion from an image sequence, a simplified Gradient-
based Optical Flow (SGBOF) [10] was used in this research. The method
is based on a linear relation between the change in intensity of pixels (or
subsets of pixels) I(x, y, t) and the displacements ∆s. Displacements ∆s
are obtained as the change in intensity over time divided by the intensity
gradient ∇I:

∆s =
I(x, y, t)− I(x, y, t+ ∆t)

| ∇I |
(1)
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Variables x and y are the discrete pixel locations and t is time. The SGBOF
method produces the most direct route from the optical information to the
displacement. The intensity gradient | ∇I | is determined by the numerical
derivation of a reference image. From Equation (1) it is clear that the sen-
sitivity to displacement is best where the intensity gradient is highest and
that the displacement ∆s of a pixel can only be determined in the direction
of the image gradient. The displacements in 2D can be measured by filming
a speckle pattern and using a subset of pixels to produce an estimate of the
motion and 3D measurements can be performed using a stereoscopic set-up.

2.2. Modal parameter identification

A common viscously damped model for a structure’s dynamic response
is formulated with partial fractions as:

αjk(ω) =
N∑
r=1

(
rAjk

i ω − λr
+

rA
∗
jk

i ω − λ∗r

)
, (2)

where αjk(ω) is the displacement frequency-response function (receptance)
of a response point j to an excitation at point k, λr are the system eigen-
values containing the angular eigenfrequencies ωr and the damping ratios ζr
according to:

λr = −ζr ωr ± i ωr
√

1− ζ2
r (3)

and rAjk are the modal constants, which result in the mode shapes. The
formulation (2) indicates the modal decomposition, where the response equals
the sum of the modes (λr, rAjk) and their complex conjugates (λ∗r, rA

∗
jk).

The purpose of modal-parameter-identification techniques is to identify the
modal parameters (λr, rAjk) from measurements of a structure’s response.

One such identification technique is the Least-Squares Complex Frequency
(LSCF) method. LSCF is a frequency-domain method derived from a common-
denominator receptance model [29]:

αj(ω) =

∑2N
r=0 aj,r e−i r∆t ω∑2N
r=0 br e−i r∆t ω

(4)

Index k is omitted, because the excitation should be the same for all the
measured responses (a Single-Input Multiple-Output measurement).
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In the common-denominator model the values br governing the eigenval-
ues λr of the system are the same for each response location j. A least-squares
criterion is used to produce a system of equations [29]:(

p∑
j=1

[Oj]− [Sj]
T [Rj]

−1 [Sj]

)
{b} = [Λ] {b} = 0, (5)

where {b} is the vector of the denominator coefficients {b0, b1, . . . b2N}T .
The matrices [Oj], [Sj], [Rj] are of a Toeplitz structure of shape (2N+1×

2N+1). A Toeplitz matrix has repetitive elements, which can be determined
once, reducing the computation. The elements (l - row, c - column, n =
1, 2, . . . , L - frequency points) are determined by [29]:

Rj, l c =
L∑
n=1

(
|Wj(Ωn)|2 e2π i (l−c)nL

)
(6)

Sj, l c = −
L∑
n=1

(
|Wj(Ωn)|2Hj(Ωn) e2π i (l−c)nL

)
(7)

Oj, l c =
L∑
n=1

(
|Wj(Ωn)Hj(Ωn)|2 e2π i (l−c)nL

)
(8)

The relations (6)-(8) are in fact the Discrete Fourier Transforms of the func-
tions |Wj(Ωn)|2, |Wj(Ωn)|2Hj(Ωn) and |Wj(Ωn)Hj(Ωn)|2; therefore, the Fast
Fourier algorithm can be used for a fast calculation [29]. Wj(ω) are the
weighting functions for each response location. The coherence can be used
as a weighting function; however, as only one measurement was taken, the
coherence was not obtained, also to reduce the computational cost no weight-
ing function was used (Wj(Ωn) = 1 for all j and n). Without the weighting
function the matrices [Rj] reduce to the identity matrix, greatly simplifying
the calculation of the sum in equation (5).

By imposing b2N = 1, thereby removing the parameter redundancy, sys-
tem (5) reduces to a shape of (2N × 2N) and can be solved via the inverse
to produce vector {b} and therefore the coefficients br that determine the
identified eigenvalues as roots of the denominator polynomial.

An identification order N higher than the number of modes is typically
used to accommodate the noise and other errors as fictitious/numerical poles.
A well-known procedure for identifying true eigenvalues is to repeat the iden-
tification for increasing orders of identification and then hand picking the
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true eigenvalues from stabilization diagrams based on whether the identified
values are converging over the increasing modal estimation order N . The
picked eigenvalues are then used to determine the numerator coefficients aj,r
for every response location j separately.

The numerator coefficients aj,r in Equation (4), and consequently the
modal constants rAj, can be determined in the next step using the LSCF;
however, because of a poor identification, the Least-Squares Frequency-Domain
method (LSFD) is typically used instead [36]. After the eigenvalues of the
system are determined, the modal constants can be determined by using the
LSFD method, based on the model:

αj(ω) =
N∑
r=1

(
rAj

i ω − λr
+

rA
∗
j

i ω − λ∗r

)
− AL
ω2

+ AU , (9)

where the variables AL and AU are the lower and upper residuals, compen-
sating for the modes above and below the measured frequency range. The
modal constants are obtained by constructing a linear set of equations (9) for
all the frequency points Ω1, Ω2, . . .ΩL, producing an overdetermined system.
The solution is obtained by solving a pseudo-inverse.

3. Modal parameter identification on Optical Flow data

Displacement measurements using cameras produce a dense full-field of
responses; however, the combination of high levels of noise and small dis-
placements at higher frequencies, produces measurements less accurate than
an accelerometer or a laser vibrometer. The displacements caused by vi-
brations tend to fall below the level of noise, making it seem as though the
response cannot be identified; however, the vibration signal is still present,
only that it is masked by noise. The modal identification of data below the
noise floor is predicted to be still possible, because modern identification
techniques such as the LSCF/LSFD incorporate the response of a wider fre-
quency range in the least-squares solution, thereby decreasing the effect of
noise on the identified parameters.

The modal identification was tested on real world data.

3.1. The measurement

A measurement of a solid steel beam with dimensions 15×30×500 mm
was performed in approximately free-free conditions. The beam was chosen
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because its response is well known and the results can be easily evaluated.
A B&K 4508 B001 accelerometer was attached at one side of the beam and
a PCB 086C03 modal hammer was used to excite the beam. The hammer
impact was in line with the ropes, to produce smaller rigid-body displace-
ments. The response was measured with a Fastcam SA-Z high-speed camera.
A sticker with black and white lines was applied to the beam to make the
displacements more evident to the camera. The camera filmed the thinner
side of the beam, thereby measuring the bending of the beam (Figure 2). The
camera filmed at 200,000 fps at a resolution of 1024×64 pixels and captured
698.984 frames (a sampling period of ∼3.5 s), producing 64 GB of data. The
displacements were identified at 7521 points on the beam. The accelerometer
and the modal hammer-force sensor were sampled using a NI9233 card with
50,000 Hz for a sampling period matching that of the camera to produce the
same frequency resolution. A hard metal tip was used on the modal hammer
and the hit was of considerable force (impulse length of ∼ 0.14 ms, peaking
at 2.6 kN) for the higher frequencies to be made visible.

2

LED

light

LED

light

high-speed

camera
accelerometer

Figure 1: The schematic of the measurement set-up

3.2. Identification of eigenvalues

First an attempt was made at identifying the eigenvalues from the camera
measurement. Due to the high levels of noise and the large frequency range
(0–9500 Hz) a high order of identification (N=500) was used to produce more
apparent stabilization diagrams. The spectrum was measured up to 100 kHz,
but only the range up to 9500 Hz was used for the parameter identification,
because the first lobe of the hammer-impulse force spectrum ranged only
up to 10 kHz. A high sampling rate was used to capture a larger number
of samples for the impact transient response, improving the signal-to-noise
ratio [37]. A slight time shift had to be imposed on the camera measurement,

7



Figure 2: A photograph of the measurement set-up

due to the apparent trigger differences. The stabilization diagram for the
camera measurement using the LSCF was performed (Figure 3).
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Figure 3: The stabilization diagram for the camera measurement using LSCF

Only eigenvalues up to the third mode at ∼2730 Hz are identified and
some of these modes are identified as unstable. The higher modes seem to be
masked under the camera noise level, which is at 0.00035 pixel (determined
as the standard deviation of a flat noisy range of the camera measurement
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spectrum). Due to the poor eigenvalue identification from the camera mea-
surements, the accelerometer data was used to identify the eigenvalues (Fig-
ure 4) and the camera measurements to identify the modal constants of the
full-field in the following step.
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Figure 4: The stabilization diagram for the accelerometer measurement using LSCF

3.3. Identification of mode shapes

The accelerometer eigenvalues up to the 8th mode at 9 kHz were used in
the identification of the modal constants from the camera measurement in
the hope of identifying the response below the camera’s noise floor.

The full-field camera measurement produced up to eight response points
over the beam’s thickness; these points are situated at the same beam length
and were averaged to improve the signal-to-noise ratio.

Simply by plotting the amplitudes of the spectra measured by the camera
αj for the frequencies f̃r closest to the identified eigenfrequecies fr produces
the indicated mode shapes (Figure 5). The modes above the 4th mode are
not, or are barely, recognizable. The mode shapes identified with the LSFD
are expected to be clearer, because they incorporate the surrounding frequen-
cies in the identification; therefore, the influence of the noise is expected to
be smaller.

There were apparent problems with the two rigid-body modes and the
first bending mode. The rigid-body response seems to be nonlinear, resulting
from the rope’s nonlinear stiffness, and cannot be identified properly. This is
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Figure 5: The amplitudes of the camera measured spectra αj(f̃r) over the beam’s length

for the frequencies closest to the eigenfrequencies f̃1,2,3,.... The plots indicate the beam’s
mode shapes only up to the fourth mode

why the lower spectrum (up to 300 Hz) was omitted from the LSFD modal
constants identification. The modal constants, producing the mode shapes,
are shown in Figure 6. The first 8th bending mode shapes of the beam are
identified and correspond to the well-known beam mode shapes.

3.4. Reconstruction

The identified modal parameters can be used to reconstruct the identified
receptance. The identified receptance curve for a point below the accelerome-
ter is shown in Figure 7 along with the receptance measured by the accelerom-
eter and the receptance measured by the camera. The identified receptance is
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Figure 6: The beam’s modal constants identified with LSFD from the camera measure-
ment using the eigenvalues determined from the accelerometer measurement. The modal
constants are plotted over the beam’s length and display the first eight measured beam’s
mode shapes close to 10 kHz

produced from the eigenvalues identified from the accelerometer receptance
and the modal constants from the camera measurement. This combination
enabled the identification of full-field high-frequency mode shapes close to
10 kHz (Figure 6), despite the fact that the resonant peaks are below the
noise level of the camera measurement, proving that the modal information
is present and can be extracted from very noisy measurements.
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Figure 7: The reconstructed receptance using the accelerometer eigenvalues and the cam-
era modal constants for a point below the accelerometer

3.5. Computation time

Full-field measurements produce large amounts of data, weighing heavily
on the computation time. This section is meant to give some idea of the
computational burden.

The simplified Gradient-based Optical Flow analysis of the 64 GB of data
requires only about 2.5 minutes on 16 processor cores.

Limiting to 7521 response points and by cutting the frequency range to
0–9500 Hz reduced the amount of data to 3 GB of complex spectra.

The LSCF eigenvalue identification for the stabilization diagram in Fig-
ure 3 required 4 h and 20 min, mainly due to the calculation of the sum from
Equation (5) (single processor core). In comparison, the stabilization for the
accelerometer measurement in Figure 4 required only 3 seconds to compute.

The calculation of the modal constants is not demanding, because the
pseudo-inverse can be calculated only once and is the same for all the response
locations j. The modal constants in Figure 6 were computed in 7 seconds.

The end results were produced from the accelerometer measured eigenval-
ues and the modal constants measured by the camera, therefore the combined
identification required only approximately 10 s to compute.
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4. Conclusion

This research analyses the modal parameter identification on full-field dis-
placement measurements obtained with a high-speed camera. The displace-
ment time series measured by the camera are very noisy, due to the displace-
ments being so small. To identify the modal parameters, over-determined
least-squares solutions are used. The identification is performed using LSCF/LSFD.
Using the camera measurements, only the first four beam modes were iden-
tified; however, by additionally using the eigenvalues from the more precise
accelerometer measurement, the mode shapes close to 10 kHz were iden-
tified from the camera measurements, despite being below the noise floor.
The combination of the accelerometer (or any other appropriate sensor) and
the camera combines the best of both worlds; a single precise sensor (e.g.
accelerometer) produces precise eigenvalues and the camera produces the
full-field mode shapes.

In future work, weighting functions could be used, particularly in the
identification of the eigenvalues, to improve the stabilization diagram of the
camera measurement in Figure 3 and produce more precise values. Also,
producing multiple measurements and averaging them is a viable option to
improving the data, however, as transferring the 64 GB of data from the
camera to the PC takes approx. 30 minutes, this approach is not often used.
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